Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
1.
Brain ; 2024 May 04.
Article in English | MEDLINE | ID: mdl-38703370

ABSTRACT

Gray matter (GM) atrophies were observed in multiple sclerosis, neuromyelitis optica spectrum disorders (both anti-aquaporin-4 antibody-positive [AQP4+], and -negative [AQP4-] subtypes NMOSD), and myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD). Revealing the pathogenesis of brain atrophy in these disorders would help their differential diagnosis and guide therapeutic strategies. To determine the neurobiological underpinnings of GM atrophies in multiple sclerosis, AQP4+ NMOSD, AQP4- NMOSD, and MOGAD, we conducted a virtual histology analysis that links T1-weighted image derived GM atrophy and gene expression using a multicenter cohort of 324 patients with multiple sclerosis, 197 patients with AQP4+ NMOSD, 75 patients with AQP4- NMOSD, 47 patients with MOGAD, and 2,169 healthy controls (HCs). First, interregional GM atrophy profiles across the cortical and subcortical regions were determined by Cohen's d between patients with multiple sclerosis, AQP4+ NMOSD, AQP4- NMOSD, MOGAD and HCs. Then, the GM atrophy profiles were spatially correlated with the gene expressions extracted from the Allen Human Brain Atlas, respectively. Finally, we explored the virtual histology of clinical feature relevant GM atrophy by subgroup analysis that stratified by physical disability, disease duration, number of relapses, lesion burden, and cognitive function. Multiple sclerosis showed severe widespread GM atrophy pattern, mainly involving subcortical nuclei and brainstem. AQP4+ NMOSD showed obvious widespread GM atrophy pattern, predominately located in occipital cortex as well as cerebellum. AQP4- NMOSD showed mild widespread GM atrophy pattern, mainly located in frontal and parietal cortices. MOGAD showed GM atrophy mainly involving the frontal and temporal cortices. High expression of genes specific to microglia, astrocytes, oligodendrocytes, and endothelial cells in multiple sclerosis, S1 pyramidal cells in AQP4+ NMOSD, as well as S1 and CA1 pyramidal cells in MOGAD had spatial correlations with GM atrophy profiles were observed, while no atrophy profile related gene expression was found in AQP4- NMOSD. Virtual histology of clinical feature relevant GM atrophy mainly pointed to the shared neuronal and endothelial cells among the four neuroinflammatory diseases. The unique underlying virtual histology patterns were microglia, astrocytes, and oligodendrocytes for multiple sclerosis; astrocytes for AQP4+ NMOSD; and oligodendrocytes for MOGAD. Neuronal and endothelial cells were shared potential targets across these neuroinflammatory diseases. These findings might help their differential diagnosis and optimal therapeutic strategies.

2.
J Neurol ; 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38558149

ABSTRACT

BACKGROUND: Spinal cord and brain atrophy are common in neuromyelitis optica spectrum disorder (NMOSD) and relapsing-remitting multiple sclerosis (RRMS) but harbor distinct patterns accounting for disability and cognitive impairment. METHODS: This study included 209 NMOSD and 304 RRMS patients and 436 healthy controls. Non-negative matrix factorization was used to parse differences in spinal cord and brain atrophy at subject level into distinct patterns based on structural MRI. The weights of patterns were obtained using a linear regression model and associated with Expanded Disability Status Scale (EDSS) and cognitive scores. Additionally, patients were divided into cognitive impairment (CI) and cognitive preservation (CP) groups. RESULTS: Three patterns were observed in NMOSD: (1) Spinal Cord-Deep Grey Matter (SC-DGM) pattern was associated with high EDSS scores and decline of visuospatial memory function; (2) Frontal-Temporal pattern was associated with decline of language learning function; and (3) Cerebellum-Brainstem pattern had no observed association. Patients with CI had higher weights of SC-DGM pattern than CP group. Three patterns were observed in RRMS: (1) DGM pattern was associated with high EDSS scores, decreased information processing speed, and decreased language learning and visuospatial memory functions; (2) Frontal-Temporal pattern was associated with overall cognitive decline; and (3) Occipital pattern had no observed association. Patients with CI trended to have higher weights of DGM and Frontal-Temporal patterns than CP group. CONCLUSION: This study estimated the heterogeneity of spinal cord and brain atrophy patterns in NMOSD and RRMS patients at individual level, and evaluated the clinical relevance of these patterns, which may contribute to stratifying participants for targeted therapy.

3.
Ther Adv Neurol Disord ; 17: 17562864241239117, 2024.
Article in English | MEDLINE | ID: mdl-38616782

ABSTRACT

Multiple sclerosis (MS) was defined as a rare disease in China due to its low prevalence. For a long time, interferon ß was the only approved disease-modifying therapy (DMT). Since the first oral DMT was approved in 2018, DMT approval accelerated, and seven DMTs were approved within 5 years. With an increasing number of DMTs being prescribed in clinical practice, it is necessary to discuss the standardized MS treatment algorithms depending on the disease activity and DMT availability. In this review paper, more than 20 Chinese experts in MS have reviewed the therapeutic progress of MS in China and worldwide and discussed algorithms for treating relapsing MS (RMS) based on the available DMTs in China, providing insights for establishing the standardized RMS treatment algorithms in this country.


Treatment algorithms of relapsing multiple sclerosis in China In this review paper, more than 20 Chinese experts in MS have reviewed the therapeutic progress of MS in China and worldwide and discussed algorithms for treating relapsing MS (RMS) based on the available DMTs in China, providing insights for establishing the standardized RMS treatment algorithms in this country: 1) CIS and RRMS account for more than 90% of the MS patients and most of them are mild to moderate; 2) MS patients should initiate DMT treatments as soon as the disease has been diagnosed in order to reduce the risk of disease progression; 3) Patients who have been diagnosed with MS should start treatment with fundamental DMTs unless the disease course has been highly active; 4) MAGNIMS score may be a suitable and simplified assessment tool for measuring treatment response to DMTs; 5) Patients treated with corticosteroids and NSIS should be switched to the standardized DMT treatment during remission in accordance with disease activity.

4.
Ann Neurol ; 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38661030

ABSTRACT

OBJECTIVE: Primary angiitis of the central nervous system (PACNS) is a rare vasculitis restricted to the brain, spinal cord, and leptomeninges. This study aimed to describe the imaging characteristics of patients with small vessel PACNS (SV-PACNS) using 7 T magnetic resonance imaging (MRI). METHODS: This ongoing prospective observational cohort study included patients who met the Calabrese and Mallek criteria and underwent 7 T MRI scan. The MRI protocol includes T1-weighted magnetization-prepared rapid gradient echo imaging, T2 star weighted imaging, and susceptibility-weighted imaging. Two experienced readers independently reviewed the neuroimages. Clinical data were extracted from the electronic patient records. The findings were then applied to a cohort of patients with large vessel central nervous system (CNS) vasculitis. RESULTS: We included 21 patients with SV-PACNS from December 2021 to November 2023. Of these, 12 (57.14%) had cerebral cortical microhemorrhages with atrophy. The pattern with microhemorrhages was described in detail based on the gradient echo sequence, leading to the identification of what we have termed the "coral-like sign." The onset age of patients with coral-like sign (33.83 ± 9.93 years) appeared younger than that of patients without coral-like sign (42.11 ± 14.18 years) (P = 0.131). Furthermore, the cerebral lesions in patients with cortical microhemorrhagic SV-PACNS showed greater propensity toward bilateral lesions (P = 0.03). The coral-like sign was not observed in patients with large vessel CNS vasculitis. INTERPRETATION: The key characteristics of the coral-like sign represent cerebral cortical diffuse microhemorrhages with atrophy, which may be an important MRI pattern of SV-PACNS. ANN NEUROL 2024.

5.
Mol Neurobiol ; 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38507030

ABSTRACT

We present a panel of central nervous system (CNS) complications associated with coronavirus disease 2019 (COVID-19) and their clinical characteristics. We aim to investigate associations between neurological autoantibodies and COVID-19 patients with predominant CNS complications. In this retrospective multi-center study, we analyze neurologic complications associated with COVID-19 patients from Dec. 2022 to Feb. 2023 at four tertiary hospitals in China. CSF and/or serum in the enrolled patients were tested for autoantibodies using tissue-based assays (TBAs) and cell-based assays (CBAs). A total of 34 consecutive patients (median age was 40.5 years [range 15-83], 50% were female) were enrolled. CNS syndromes included encephalitis (n=15), encephalopathies (n=6), meningoencephalitis (n=3), ADEM (n=2), depression (n = 2), Alzheimer's disease (n=2), Parkinson disease (n=1), and central nervous system vasculitis (n=1). Twenty-eight specimens (of 44 tested; 11/27 [40.7%] CSF, 13/17 [76.5%] serums) were confirmed by TBAs to be autoantibodies positive. However, only a few autoantibodies (1 with MOG and 1 with NMDAR) were detected by CBAs assays. Twenty-four patients received immunotherapy. After a mean time of 7.26 months of follow-up, 75.8% (25/33) of patients had good outcome (mRS score ≤2). Although no significant difference was observed between the two groups, the proportion of positive CSF autoantibodies in the poor outcomes group was higher than that in the good outcomes group (57.1% vs 31.5%, P = 0.369). Autoantibodies were frequently observed in COVID-19-associated CNS complications. The identification of these autoantibody-positive COVID-19 cases is important as they respond favorably to immunotherapy.

6.
Article in English | MEDLINE | ID: mdl-38453475

ABSTRACT

BACKGROUND: Although trigeminal nerve involvement is a characteristic of multiple sclerosis (MS), its prevalence across studies varies greatly due to MRI resolution and cohort selection bias. The mechanism behind the site specificity of trigeminal nerve injury is still unclear. We aim to determine the prevalence of trigeminal nerve involvement in patients with MS in a consecutive 7T brain MRI cohort. METHODS: This observational cohort originates from an ongoing China National Registry of Neuro-Inflammatory Diseases. Inclusion criteria were the following: age 18 years or older, diagnosis of MS according to the 2017 McDonald criteria and no clinical relapse within the preceding 3 months. Each participant underwent 7T MAGNETOM Terra scanner (Siemens, Erlangen, Germany), using a 32-channel phased array coil at Beijing Tiantan Hospital. T1-weighted magnetisation-prepared rapid acquisition gradient echoes, fluid-attenuated inversion recovery (FLAIR) and fluid and white matter suppression images were used to identify lesions. FLAIR* and T2* weighted images were used to identify central vein sign (CVS) within the trigeminal lesions. RESULTS: 120 patients underwent 7T MRI scans between December 2021 and May 2023. 19/120 (15.8%) patients had a total of 45 trigeminal lesions, of which 11/19 (57.9%) were bilateral. The linear lesions extended along the trigeminal nerve, from the root entry zone (REZ) (57.8%, 26/45) to the pontine-medullary nucleus (42.2%, 19/45). 26.9% (7/26) of the lesions in REZ showed a typical central venous sign. CONCLUSION: In this 7T MRI cohort, the prevalence of trigeminal nerve involvement was 15.8%. Characteristic CVS was detected in 26.9% of lesions in REZ. This suggests an inflammatory demyelination mechanism of trigeminal nerve involvement in MS.

8.
Sci Transl Med ; 16(736): eadg5116, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38416841

ABSTRACT

Neuromyelitis optica spectrum disorder (NMOSD) is an autoimmune astrocytopathy of the central nervous system, mediated by antibodies against aquaporin-4 water channel protein (AQP4-Abs), resulting in damage of astrocytes with subsequent demyelination and axonal damage. Extracellular communication through astrocyte-derived extracellular vesicles (ADEVs) has received growing interest in association with astrocytopathies. However, to what extent ADEVs contribute to NMOSD pathogenesis remains unclear. Here, through proteomic screening of patient-derived ADEVs, we observed an increase in apolipoprotein E (APOE)-rich ADEVs in patients with AQP4-Abs-positive NMOSD. Intracerebral injection of the APOE-mimetic peptide APOE130-149 attenuated microglial reactivity, neuroinflammation, and brain lesions in a mouse model of NMOSD. The protective effect of APOE in NMOSD pathogenesis was further established by the exacerbated lesion volume in APOE-deficient mice, which could be rescued by exogenous APOE administration. Genetic knockdown of the APOE receptor lipoprotein receptor-related protein 1 (LRP1) could block the restorative effects of APOE130-149 administration. The transfusion ADEVs derived from patients with NMOSD and healthy controls also alleviated astrocyte loss, reactive microgliosis, and demyelination in NMOSD mice. The slightly larger beneficial effect of patient-derived ADEVs as compared to ADEVs from healthy controls was further augmented in APOE-/- mice. These results indicate that APOE from astrocyte-derived extracellular vesicles could mediate disease-modifying astrocyte-microglia cross-talk in NMOSD.


Subject(s)
Neuromyelitis Optica , Humans , Animals , Mice , Astrocytes/metabolism , Aquaporin 4 , Proteomics , Apolipoproteins E , Autoantibodies
9.
J Neuroimmunol ; 387: 578285, 2024 02 15.
Article in English | MEDLINE | ID: mdl-38219400

ABSTRACT

BACKGROUND: Rituximab effectively targets B cells and reduces relapses in neuromyelitis optica spectrum disorder (NMOSD). But the ideal dosage and treatment intervals remain unanswered. We aimed to assess the efficacy and safety of low and ultralow-dose rituximab in NMOSD. METHODS: We conducted a retrospective analysis of NMOSD patients treated with rituximab at two Chinese tertiary hospitals. Patients received either a low-dose regimen (500 mg reinfusion every 6 months) or an ultralow-dose regimen: 100 to 300 mg rituximab based on CD19+B cells (100 mg for 1-1.5% of peripheral blood mononuclear cells, 200 mg for 1.5-5%, and 300 mg for over 5%). RESULTS: We analyzed data from 136 patients (41 in the low-dose group, 95 in the ultralow-dose group) with median follow-up durations of 43 and 34.2 months, respectively. Both groups exhibited similar sex distribution, age at disease onset, annual relapse rate, and baseline disease duration. Survival analysis showed that ultralow-dose rituximab was noninferior to low-dose rituximab in preventing relapses. Infusion reactions occurred in 20 of 173 (11.6%) low-dose treatments and 9 of 533 (1.7%) ultralow-dose treatments. B-cell re-emergence was observed in 137 of 236 (58.1%) monitors in the low-dose group and 367 of 1136 (32.3%) monitors in the ultralow-dose group. CONCLUSION: Ultralow dose rituximab was noninferior to low-dose rituximab in preventing NMOSD relapses. A randomized controlled trial is essential to validate these findings.


Subject(s)
Neuromyelitis Optica , Humans , Rituximab , Immunologic Factors , Retrospective Studies , Leukocytes, Mononuclear , Recurrence , Aquaporin 4
10.
Mult Scler Relat Disord ; 81: 105146, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38007962

ABSTRACT

OBJECTIVE: To investigate the abnormal radiomics features of the hippocampus in patients with multiple sclerosis (MS) and neuromyelitis optica spectrum disorders (NMOSD) and to explore the clinical implications of these features. METHODS: 752 participants were recruited in this retrospective multicenter study (7 centers), which included 236 MS, 236 NMOSD, and 280 normal controls (NC). Radiomics features of each side of the hippocampus were extracted, including intensity, shape, texture, and wavelet features (N = 431). To identify the variations in these features, two-sample t-tests were performed between the NMOSD vs. NC, MS vs. NC, and NMOSD vs. MS groups at each site. The statistical results from each site were then integrated through meta-analysis. To investigate the clinical significance of the hippocampal radiomics features, we conducted further analysis to examine the correlations between these features and clinical measures such as Expanded Disability Status Scale (EDSS), Brief Visuospatial Memory Test (BVMT), California Verbal Learning Test (CVLT), and Paced Auditory Serial Addition Task (PASAT). RESULTS: Compared with NC, patients with MS exhibited significant differences in 78 radiomics features (P < 0.05/862), with the majority of these being texture features. Patients with NMOSD showed significant differences in 137 radiomics features (P < 0.05/862), most of which were intensity features. The difference between MS and NMOSD patients was observed in 47 radiomics features (P < 0.05/862), mainly texture features. In patients with MS and NMOSD, the most significant features related to the EDSS were intensity and textural features, and the most significant features related to the PASAT were intensity features. Meanwhile, both disease groups observed a weak correlation between radiomics data and BVMT. CONCLUSION: Variations in the microstructure of the hippocampus can be detected through radiomics, offering a new approach to investigating the abnormal pattern of the hippocampus in MS and NMOSD.


Subject(s)
Multiple Sclerosis , Neuromyelitis Optica , Humans , Neuromyelitis Optica/diagnostic imaging , Multiple Sclerosis/diagnostic imaging , Radiomics , Retrospective Studies , Multicenter Studies as Topic
11.
Stroke Vasc Neurol ; 2023 Sep 12.
Article in English | MEDLINE | ID: mdl-37699727

ABSTRACT

Damage or microstructural alterations of the white matter can cause dysfunction of the intrinsic neural networks in a condition termed as white matter disease (WMD). Frequently detected on brain computed tomography and magnetic resonance imaging scans, WMD is commonly presented in inflammatory demyelinating diseases like multiple sclerosis (MS) and vascular diseases such as cerebral small vessel disease (CSVD). Prevention of MS and CSVD progression requires early treatments with drastically different medications and approaches, as such, early and accurate diagnosis of WMD, derived from vascular or demyelinating etiologies, is of paramount importance. However, the clinical and imaging similarities between MS, especially during the early stage, and CSVD, pose a significant dilemma in differentiating these two conditions. In this review, we attempt to summarize and contrast the distinguishing features of MS and CSVD for aiding accurate diagnosis to ensure timely corresponding management in the early stages of MS and CSVD.

13.
Front Neurosci ; 17: 1171112, 2023.
Article in English | MEDLINE | ID: mdl-37234258

ABSTRACT

Background: Massive cerebral infarction (MCI) causes severe neurological deficits, coma and can even result in death. Here, we identified hub genes and pathways after MCI by analyzing microarray data from a murine model of ischemic stroke and identified potential therapeutic agents for the treatment of MCI. Methods: Microarray expression profiling was performed using the GSE28731 and GSE32529 datasets from the Gene Expression Omnibus (GEO) database. Data from a sham group (n = 6 mice) and a middle cerebral artery occlusion (MCAO) group (n = 7 mice) were extracted to identify common differentially expressed genes (DEGs). After identifying gene interactions, we generated a protein-protein interaction (PPI) network with Cytoscape software. Then, the MCODE plug-in in Cytoscape was used to determine key sub-modules according to MCODE scores. Enrichment analyses were then conducted on DEGs in the key sub-modules to evaluate their biological functions. Furthermore, hub genes were identified by generating the intersections of several algorithms in the cytohubba plug-in; these genes were then verified in other datasets. Finally, we used Connectivity MAP (CMap) to identify potential agents for MCI therapy. Results: A total of 215 common DEGs were identified and a PPI network was generated with 154 nodes and 947 edges. The most significant key sub-module had 24 nodes and 221 edges. Gene ontology (GO) analysis showed that the DEGs in this sub-module showed enrichment in inflammatory response, extracellular space and cytokine activity in terms of biological process, cellular component and molecular function, respectively. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed that TNF signaling was the most enriched pathway. Myd88 and Ccl3 were identified as hub genes and TWS-119 was identified as the most potential therapeutic agent by CMap. Conclusions: Bioinformatic analysis identified two hub genes (Myd88 and Ccl3) for ischemic injury. Further analysis identified TWS-119 as the best potential candidate for MCI therapy and that this target may be associated with TLR/MyD88 signaling.

15.
J Transl Med ; 21(1): 352, 2023 05 27.
Article in English | MEDLINE | ID: mdl-37245044

ABSTRACT

BACKGROUND: The cerebellum plays key roles in the pathology of multiple sclerosis (MS) and neuromyelitis optica spectrum disorder (NMOSD), but the way in which these conditions affect how the cerebellum communicates with the rest of the brain (its connectome) and associated genetic correlates remains largely unknown. METHODS: Combining multimodal MRI data from 208 MS patients, 200 NMOSD patients and 228 healthy controls and brain-wide transcriptional data, this study characterized convergent and divergent alterations in within-cerebellar and cerebello-cerebral morphological and functional connectivity in MS and NMOSD, and further explored the association between the connectivity alterations and gene expression profiles. RESULTS: Despite numerous common alterations in the two conditions, diagnosis-specific increases in cerebellar morphological connectivity were found in MS within the cerebellar secondary motor module, and in NMOSD between cerebellar primary motor module and cerebral motor- and sensory-related areas. Both diseases also exhibited decreased functional connectivity between cerebellar motor modules and cerebral association cortices with MS-specific decreases within cerebellar secondary motor module and NMOSD-specific decreases between cerebellar motor modules and cerebral limbic and default-mode regions. Transcriptional data explained > 37.5% variance of the cerebellar functional alterations in MS with the most correlated genes enriched in signaling and ion transport-related processes and preferentially located in excitatory and inhibitory neurons. For NMOSD, similar results were found but with the most correlated genes also preferentially located in astrocytes and microglia. Finally, we showed that cerebellar connectivity can help distinguish the three groups from each other with morphological connectivity as predominant features for differentiating the patients from controls while functional connectivity for discriminating the two diseases. CONCLUSIONS: We demonstrate convergent and divergent cerebellar connectome alterations and associated transcriptomic signatures between MS and NMOSD, providing insight into shared and unique neurobiological mechanisms underlying these two diseases.


Subject(s)
Connectome , Multiple Sclerosis , Neuromyelitis Optica , Humans , Multiple Sclerosis/diagnostic imaging , Multiple Sclerosis/genetics , Neuromyelitis Optica/diagnostic imaging , Neuromyelitis Optica/genetics , Neuromyelitis Optica/pathology , Brain/diagnostic imaging , Brain/pathology , Magnetic Resonance Imaging , Cerebellum/diagnostic imaging , Cerebellum/pathology
16.
Radiol Artif Intell ; 4(6): e210292, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36523644

ABSTRACT

Accurate differentiation of intramedullary spinal cord tumors and inflammatory demyelinating lesions and their subtypes are warranted because of their overlapping characteristics at MRI but with different treatments and prognosis. The authors aimed to develop a pipeline for spinal cord lesion segmentation and classification using two-dimensional MultiResUNet and DenseNet121 networks based on T2-weighted images. A retrospective cohort of 490 patients (118 patients with astrocytoma, 130 with ependymoma, 101 with multiple sclerosis [MS], and 141 with neuromyelitis optica spectrum disorders [NMOSD]) was used for model development, and a prospective cohort of 157 patients (34 patients with astrocytoma, 45 with ependymoma, 33 with MS, and 45 with NMOSD) was used for model testing. In the test cohort, the model achieved Dice scores of 0.77, 0.80, 0.50, and 0.58 for segmentation of astrocytoma, ependymoma, MS, and NMOSD, respectively, against manual labeling. Accuracies of 96% (area under the receiver operating characteristic curve [AUC], 0.99), 82% (AUC, 0.90), and 79% (AUC, 0.85) were achieved for the classifications of tumor versus demyelinating lesion, astrocytoma versus ependymoma, and MS versus NMOSD, respectively. In a subset of radiologically difficult cases, the classifier showed an accuracy of 79%-95% (AUC, 0.78-0.97). The established deep learning pipeline for segmentation and classification of spinal cord lesions can support an accurate radiologic diagnosis. Supplemental material is available for this article. © RSNA, 2022 Keywords: Spinal Cord MRI, Astrocytoma, Ependymoma, Multiple Sclerosis, Neuromyelitis Optica Spectrum Disorder, Deep Learning.

18.
BMC Neurol ; 22(1): 323, 2022 Aug 27.
Article in English | MEDLINE | ID: mdl-36030231

ABSTRACT

BACKGROUND: Antibodies against myelin-oligodendrocyte-glycoprotein (MOG-Abs) associated disease (MOGAD) has been recognized as a disease entity. Optic neuritis (ON) is the most common symptom in MOGAD. To demonstrate the differences in retinal microvascular characteristics between patients with MOGAD-ON and aquaporin-4 antibody (AQP4-Ab) positive ON. METHODS: In a prospective study, optical coherence tomography (OCT) and optical coherence tomography angiography (OCTA) were used to measure retinal and microvascular parameters. RESULTS: Twenty-six MOGAD-ON eyes, 40 AQP4-ON eyes, and 60 control eyes were included in the study. The thickness of RNFL and GCC in MOGAD-ON eyes was significantly lower than that of HC (p < 0.001, respectively), but comparable to AQP4-ON eyes. The vessel density in retina capillary plexus (RCP) was reduced significantly in MOGAD-ON than that in AQP4-ON (p < 0.05, respectively). The visual accuracy was positively correlated with vessel density of superficial RCP in MOG-ON (p = 0.001) and positively correlated with the thickness of the inner retina layer in AQP4-ON (p < 0.001). CONCLUSION: The retinal neuro-axonal damages between MOGAD-ON and AQP4-ON were comparable. Unlike AQP4-ON eyes, microvascular densities were significantly reduced in MOGAD-ON and were positively correlated with the deterioration of visual acuity in MOGAD-ON. TRIAL REGISTRATION: Clinical and Imaging Patterns of Neuroinflammation Diseases in China (CLUE, NCT: 04106830).


Subject(s)
Neuromyelitis Optica , Optic Neuritis , Retinal Diseases , Aquaporin 4 , Autoantibodies , Humans , Myelin-Oligodendrocyte Glycoprotein , Prospective Studies , Retina , Tomography, Optical Coherence
19.
Mult Scler Relat Disord ; 66: 104026, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35868153

ABSTRACT

BACKGROUND: Idiopathic hypertrophic pachymeningitis (IHP) is a rare inflammatory disease that causes focal or diffuse thickening of the dura mater. However, longitudinal follow up studies are still lacking for these patients. OBJECTIVE: To investigate the clinical characteristics, neuroimaging findings, treatment response and outcome of IHP. METHOD: A retrospective case series of 30 patients admitted Beijing Tiantan Hospital were screened via Hospital Information System from January 1st, 2011, to January 31st, 2021. All patients' clinical symptoms, imaging, and treatment response were collected via a standardized form. We compared the effects of high-dose and low-dose corticosteroids on headache, impaired vision, and MRI remission during acute onset. The effects of different immunosuppressants on preventing relapses were also compared. RESULTS: Headache (93.3%) and multiple cranial neuropathy (66.7%) were the most common symptoms of IHP. Cerebral spinal fluid test showed that protein levels were elevated in 17 (56.7%) patients, and white blood cells were increased in seven patients. MRI demonstrated that diffuse (60%) and focal (40%) enhancement occurred in the dura mater, especially in the tentorium cerebellum (80%). High-dose and low-dose corticosteroids reduced headache and dural enhancement during the acute phase. The high dose corticosteroid significantly relieved the headache than the low dose group (p = 0.041). Patients treated with mycophenolate mofetil and cyclophosphamide might achieve longer remission (months, p = 0.428). CONCLUSION: Headache and multiple cranial neuropathy are the most common clinical manifestations of IHP. In this study, almost all patients had a good initial response to corticosteroid therapy during the acute phase. Mycophenolate mofetil and cyclosporine may be effective for preventing relapses.


Subject(s)
Cranial Nerve Diseases , Cyclosporins , Meningitis , Adrenal Cortex Hormones/therapeutic use , Cranial Nerve Diseases/complications , Cyclophosphamide/therapeutic use , Cyclosporins/therapeutic use , Headache/etiology , Humans , Hypertrophy/diagnostic imaging , Hypertrophy/drug therapy , Immunosuppressive Agents/therapeutic use , Magnetic Resonance Imaging , Meningitis/complications , Meningitis/diagnostic imaging , Meningitis/drug therapy , Mycophenolic Acid , Recurrence , Retrospective Studies
20.
Lancet Reg Health West Pac ; 18: 100302, 2022 Jan.
Article in English | MEDLINE | ID: mdl-35024648

ABSTRACT

BACKGROUND: Guillain-Barré syndrome (GBS) is the most prevalent acute autoimmune polyneuropathy, however, the incidence of GBS across China remains undetermined. We conducted the first nationwide study to extrapolate the incidence and mortality rates of GBS across all age groups at a national scale. METHODS: This study analyzed patient metrics from the National Hospital Quality Monitoring System, a comprehensive administrative database of which incorporate all 1665 tertiary hospitals in mainland China. For all study patients the "Medical Record Homepage" encompasses 346 distinct variables such as demographic characteristics, diagnoses, procedures, expenses, etc., that are systematically recorded from these hospitals by standard protocol. All GBS diagnoses adhered to the National Institute of Neurologic and Communicative Disorders and Stroke (NINCDS) diagnostic criteria and were identified with ICD-10 code (G61•0). FINDINGS: From 2016 to 2019, 75,548 hospital admissions for 38,861 GBS patients were identified. The age- and sex-adjusted incidence per 100,000 person-years is 0·698 (95% confidence interval [CI], 0·691-0·705), 0·233(0·225-0·242) in children and 0·829(0·820-0·837) in adults. The male-to-female ratio is 1·49. Peak disease onset was detected in the 70-74 years age group with an incidence of 1·806/100, 000 (95% CI, 1·741-1·870). Recognizable GBS distribution patterns were recognized in the southeastern coastal areas, where the cases of GBS were concentrated in the summer and autumn seasons. Prevalent comorbidities include hypertension (28·8%) and stroke (14·3%). The median length of hospitalization was 13·0 (8·0-18·0) days with a median hospitalization cost of $2371·60 ($1281·80-5463·60). Covering 69·9% of study patients, the Basic Medical Insurance was the most common payment mechanism. From 2016-2019, 426 adults and 13 children died in this study pool, with a hospital mortality rate of 11·2 per 1,000 person-years. INTERPRETATION: For the first time, we obtained a national incidence for GBS at 0·233 in children and 0·829 in adults per 100,000 in China. A differential spatiotemporal incidence is presented most southeast coastal areas in the summer and autumn seasons. FUNDING: National Science Foundation of China (91949208, 91642205, and 81830038); Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing.

SELECTION OF CITATIONS
SEARCH DETAIL
...